高教社杯全国大学生数学建模竞赛题目(四套ABCD)

admins

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

  当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。让我们一起到学习啦一起学习吧!

  2017年高教社杯全国大学生数学建模竞赛题目

  A题 CT系统参数标定及成像

  CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

  CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

  请建立相应的数学模型和算法,解决以下问题:

  (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

  (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

  (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。

  (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。

  (1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为problem2.xls和problem3.xls)

  2017年高教社杯全国大学生数学建模竞赛题目

  (请先阅读“全国大学生数学建模竞赛论文格式规范”)

  B题 “拍照赚钱”的任务定价

  “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。

  附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题:

  1.研究附件一中项目的任务定价规律,分析任务未完成的原因。

  2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。

  3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?

  4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

  附件一:已结束项目任务数据

  附件二:会员信息数据

  附件三:新项目任务数据

  2017年高教社杯全国大学生数学建模竞赛题目

  (请先阅读“全国大学生数学建模竞赛论文格式规范”)

  2017年高教社杯全国大学生数学建模竞赛题目

  (请先阅读“全国大学生数学建模竞赛论文格式规范”)

  C题 颜色与物质浓度辨识

  比色法是目前常用的一种检测物质浓度的方法,即把待测物质制备成溶液后滴在特定的白色试纸表面,等其充分反应以后获得一张有颜色的试纸,再把该颜色试纸与一个标准比色卡进行对比,就可以确定待测物质的浓度档位了。由于每个人对颜色的敏感差异和观测误差,使得这一方法在精度上受到很大影响。随着照相技术和颜色分辨率的提高,希望建立颜色读数和物质浓度的数量关系,即只要输入照片中的颜色读数就能够获得待测物质的浓度。试根据附件所提供的有关颜色读数和物质浓度数据完成下列问题:

  1.附件Data1.xls中分别给出了5种物质在不同浓度下的颜色读数,讨论从这5组数据中能否确定颜色读数和物质浓度之间的关系,并给出一些准则来评价这5组数据的优劣。

  2.对附件Data2.xls中的数据,建立颜色读数和物质浓度的数学模型,并给出模型的误差分析。

  探讨数据量和颜色维度对模型的影响。

  2017年高教社杯全国大学生数学建模竞赛题目

  (请先阅读“全国大学生数学建模竞赛论文格式规范”)

  D题 巡检线路的排班

  某化工厂有26个点需要进行巡检以保证正常生产,各个点的巡检周期、巡检耗时、两点之间的连通关系及行走所需时间在附件中给出。

  每个点每次巡检需要一名工人,巡检工人的巡检起始地点在巡检调度中心(XJ0022),工人可以按固定时间上班,也可以错时上班,在调度中心得到巡检任务后开始巡检。现需要建立模型来安排巡检人数和巡检路线,使得所有点都能按要求完成巡检,并且耗费的人力资源尽可能少,同时还应考虑每名工人在一时间段内(如一周或一月等)的工作量尽量平衡。

  问题1. 如果采用固定上班时间,不考虑巡检人员的休息时间,采用每天三班倒,每班工作8小时左右,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

  问题2. 如果巡检人员每巡检2小时左右需要休息一次,休息时间大约是5到10分钟,在中午12时和下午6时左右需要进餐一次,每次进餐时间为30分钟,仍采用每天三班倒,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。

  问题3. 如果采用错时上班,重新讨论问题1和问题2,试分析错时上班是否更节省人力。

文章版权声明:除非注明,否则均为映心摘原创文章,转载或复制请以超链接形式并注明出处。