数学说难也难,说不难也不难。关于在于如何学习,不知道同学对于初二数学知识点总结归纳过没。下面小编为大家带来初二下册数学重要知识点总结,希望大家喜欢!
初二下册数学重要知识点
第一章分式
1、分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2、分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数
1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用。
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差。
初二下册数学知识点总结
第一章分式
1分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3整数指数幂的加减乘除法
4分式方程及其解法
第二章反比例函数
1反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2反比例函数在实际问题中的应用
第三章勾股定理
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形
第四章四边形
1平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的.两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
初二下册数学知识点归纳
1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。
2、对于分式概念的理解,应把握以下几点:
(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能为零。
3、分式有意义、无意义的条件
(1)分式有意义的条件:分式的分母不等于0;
(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:
当分式的分子等于0,而分母不等于0时,分式的值为0。即,使B=0的条件是:A=0,B≠0。
5、有理式整式和分式统称为有理式。整式分为单项式和多项式。分类:有理式
单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由数学网为您提供的初二下册数学知识点归纳:分式的概念,祝您学习愉快!